Low-Voltage, Low ron, Single SPDT Analog Switch In SC-89 Package

FEATURES

- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance - ron: 1.8Ω @ 2.7 V
- Low Charge Injection
- Low Voltage Logic Compatible
- SC-89 Package ($1.6 \times 1.6 \mathrm{~mm}$)

Pb -free Available

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space
- Guaranteed 2-V Operation

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits
- ADC and DAC Applications
- Low Voltage Data Acquisition Systems

DESCRIPTION

The DG2011 is a low on-resistance, single-pole/double-throw monolithic CMOS analog switch. It is designed for low voltage applications with guaranteed operation at 2 V . The DG2011 is ideal for portable and battery powered equipment, requiring high performance and efficient use of board space. In additional to the low on-resistance (1.8 Ω @ 2.7 V), charge injection is less than 10 pC over the entire analog range.

The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG2011 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup.

Break-before-make is guaranteed.

The DG2011 represents a breakthrough in packaging development for analog switching products. The SC-89 package ($1.6 \times 1.6 \mathrm{~mm}^{2}$) - also know as SOT-666 in the industry - reduces board spacing by approximately 40% while obtaining performance comparable to SC-70 analog switch devices available today.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Device Marking: Ax
x = Date/Lot Traceability Code

COMMERCIAL ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC-89 (SOT-666) with Tape and Reel	DG2011DX-T1
	SC-89 (SOT-666) Lead (Pb)-Free with Tape and Reel	DG2011DX-T1-E3

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Reference to GND
V+.. 0.3 to +6 V

Continuous Current (NO, NC, COM pins) $\pm 150 \mathrm{~mA}$
Peak Current . $\pm 300 \mathrm{~mA}$
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
Storage Temperature (D Suffix) - 65 to $150^{\circ} \mathrm{C}$

Power Dissipation (Packages) ${ }^{\text {b }}$
SC-89 ${ }^{\circ}$ \qquad

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC Board.
c. Derate $2.15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

SPECIFICATIONS (V+ = 2.0 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 1.6 \mathrm{~V}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO},}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	ron	$\begin{gathered} \mathrm{V}+=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 0.9 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=20 \mathrm{~mA} \end{gathered}$	Room Full		3.5	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	Ω
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=2.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	ICOM(off)		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\dagger}$	ICOM(on)	$\mathrm{V}_{+}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	

Digital Control

Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.5			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		75	$\begin{aligned} & 110 \\ & 113 \end{aligned}$	ns
Turn-Off Time	tofF		Room Full		37	$\begin{aligned} & 71 \\ & 76 \end{aligned}$	
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$		Room	1	37		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		7		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-62		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-69		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		29		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CON}_{\text {O }}$		Room		85		

Power Supply

Power Supply Range	$\mathrm{V}+$		1.8		5.5
Power Supply Current	$\mathrm{I}+$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$		0.01	1.0

SPECIFICATIONS (V+ = $\mathbf{3} \mathbf{V}$)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {IN }}=0.4 \text { or } 2.0 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$		Full	0		V+	V
On-Resistance	ron	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.9 \mathrm{~V} / 1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=50 \mathrm{~mA} \end{gathered}$	Room Full		1.8	$\begin{aligned} & 2.7 \\ & 2.9 \end{aligned}$	Ω
ron Match	$\Delta \mathrm{r}_{\mathrm{ON}}$		Room			0.2	
ron Flatness	ron Flatness		Room		0.2	0.5	
Switch Off Leakage Current	I_{NO} (off), $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM (off) }}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		1 10	
Channel-On Leakage Current	ICOM(on)	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		45	75 77	ns
Turn-Off Time	toff		Room Full		29	$\begin{aligned} & 59 \\ & 62 \end{aligned}$	
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$		Room	1	16		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		2		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-62		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-68		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		28		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {O }}$		Room		84		

Power Supply

Power Supply Range	V+		1.8		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}		0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}				3.3	$\mu \mathrm{W}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5-V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

DG2011
Vishay Siliconix

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

FIGURE 1. Switching Time

FIGURE 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

FIGURE 3. Charge Injection

FIGURE 4. Off-Isolation

FIGURE 5. Channel Off/On Capacitance

[^0]
[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70102.

